Artificial Intelligence Untuk Identifikasi Motif Tenun Tradisional Sulawesi Tengah
Artificial Intelligence for Identifying Traditional Weaving Motifs of Central Sulawesi
Abstrak
Traditional weaving from Central Sulawesi, such as the motifs of Magau, Banua Oge/Souraja, and Tadulako, reflects deep cultural and historical values. However, the complexity of the patterns and motifs often makes manual identification challenging. This research employs an Artificial Intelligence (AI) approach using Convolutional Neural Networks (CNN) to automate the identification of these motifs. The AI model is trained using a diverse dataset of woven motif images and shows significant accuracy in classifying Magau, Banua Oge/Souraja, and Tadulako motifs. This research opens up cultural preservation and innovation opportunities in woven products with modern technology. The achieved result is the evaluation of the AI model using the following metrics: accuracy, precision, recall, and the confusion matrix. The accuracy obtained for each motif reaches 90%.
Referensi
Ahmad, T., & Aziz, M. N. (2019). Data preprocessing and feature selection for machine learning intrusion detection systems. ICIC Express Letters, 13(2), 93–101. https://doi.org/10.24507/icicel.13.02.93
Batool, A., & Byun, Y. C. (2025). A lightweight multi-path convolutional neural network architecture using optimal features selection for multiclass classification of brain tumor using magnetic resonance images. Results in Engineering, 25(January), 104327. https://doi.org/10.1016/j.rineng.2025.104327
Chai, J., Zeng, H., Li, A., & Ngai, E. W. T. (2021). Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6(March), 100134. https://doi.org/10.1016/j.mlwa.2021.100134
Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibáñez, L. D., Kacprzak, E., & Groth, P. (2020). Dataset search: a survey. VLDB Journal, 29(1), 251–272. https://doi.org/10.1007/s00778-019-00564-x
Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-09954-8
Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science, 132, 679–688. https://doi.org/10.1016/j.procs.2018.05.069
Jang, J. (2021). Design of Deep Learning-based Technology for Place Image Collecting. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(5), 216–222. https://doi.org/10.17762/turcomat.v12i5.878
Koesten, L., Simperl, E., Blount, T., Kacprzak, E., & Tennison, J. (2020). Everything you always wanted to know about a dataset: Studies in data summarisation. International Journal of Human Computer Studies, 135(October 2019), 102367. https://doi.org/10.1016/j.ijhcs.2019.10.004
Liliana, D. Y. (2019). Emotion recognition from facial expression using deep convolutional neural network. Journal of Physics: Conference Series, 1193(1). https://doi.org/10.1088/1742-6596/1193/1/012004
Liu, S., Zhao, J., Wang, H., Li, R., & Lu, Z. (2024). Using Convolutional Neural Networks (CNN) to Realize Deep Recognition Analysis of Power Technology Standard Images. Procedia Computer Science, 243, 323–331. https://doi.org/10.1016/j.procs.2024.09.040
Łosiński, J., & Czarnowski, I. (2025). Comparison of CNN architectures for INTERCO. Procedia Computer Science, 270, 861–870. https://doi.org/10.1016/j.procs.2025.09.206
Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020
Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16(August), 100258. https://doi.org/10.1016/j.array.2022.100258
Nemavhola, A., Chibaya, C., & Viriri, S. (2025). A Systematic Review of CNN Architectures, Databases, Performance Metrics, and Applications in Face Recognition. Information (Switzerland), 16(2), 1–41. https://doi.org/10.3390/info16020107
Ramadhan, M. F., & Adi Prasetijo. (2023). Warisan Budaya dalam Konteks Standar Internasional: Penjagaan Warisan Budaya Untuk Pembangunan Berkelanjutan. Janus, 1(2), 123–134. https://doi.org/10.22146/janus.v1i2.9127
Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes, 148(March 2017), 56–62. https://doi.org/10.1016/j.beproc.2018.01.004
Sane, P., & Agrawal, R. (2017). Pixel Normalization from Numeric Data as Input to Neural Networks. 2250–2254. http://arxiv.org/abs/1705.01809
Sarang Narkhede. (2018). Understanding Confusion Matrix. https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0
Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AAAI Workshop - Technical Report, WS-06-06(June 2014), 24–29. https://doi.org/10.1007/11941439_114
Hak Cipta (c) 2025 Mohammad Yazdi Pusadan, Rahma Laila, Septiano Anggun Pratama

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
